A Complete Guide to Rare Earth Magnets

04 Mar.,2024

 

What Is a Rare Earth Magnet?

A rare earth magnet is a magnet made from one of the rare earth elements (of which there are 17) in the Lanthanide series of metals in the periodic table. The two most common rare earth magnets are Neodymium (Nd-Fe-B) and Samarium Cobalt (SmCo). Read more about these two types of magnets.

The term “rare earth” can be misleading, because rare earth metals are not very rare. They’re actually relatively abundant in the Earth’s crust, and the most common ones are found in concentrations similar to commonplace industrial metals such as tine, copper, and zinc. They’re called “rare earth” since they aren’t found in large, concentrated amounts. Rather, they’re mixed in with other elements, making them economically challenging to mine. As a result, only a few sources provide most of the world’s supply of rare earth elements.

By far, China is the world’s largest producer of rare earth metals, with a yearly production of 140,000 metric tons (MT). The US is the next largest producer, with an annual output of just 38,000 MT. The only US mine is the Mountain Pass mine in California. Even though the US is the second-largest producer, the US still heavily imports rare earth materials and metals since the output isn’t plentiful. In contrast to China, Vietnam and Brazil are the 9th and 10th largest producers with 1000 MT each.

Rare earth magnets are the strongest permanent magnets available and have significantly higher performance than ceramic/ferrite magnets (composed of strontium carbonate and iron oxide) and alnico magnets (composed of aluminum, nickel and cobalt).

How Rare Earth Magnets Are Separated

Since rare earth elements are found among other elements, they must be separated using a solvent extraction process. This process involves performing a chemical reaction to force one of the two elements to change phases (for example, going from a liquid to a solid). When this chemical reaction happens, the elements separate, and the concentrations of elements change. However, the change is minor, so it takes thousands and thousands of extractions to get to a purified phase. As a result, while the process works well, it’s a very inefficient and time-consuming process that produces a huge amount of waste.

Watch this video to learn more.

For more information neodymium magnets health benefits, please get in touch with us!