Crucibles Selection Guide | MSE Supplies LLC

28 Jul.,2025

 

Crucibles Selection Guide | MSE Supplies LLC

MSE Supplies is your source for many types of crucibles, including MgO crucibles ranging from 10 mL to 100 mL, metal crucibles, ceramic crucibles, and high-purity lab crucibles. We also produce customized crucibles to your specifications from your applications. Request a quote today.

Please visit our website for more information on this topic.

What are Crucibles

Crucibles are essential lab tools that withstand extreme temperatures and harsh chemical conditions. They're containers crafted from high-purity materials like metals and ceramics, ensuring minimal contamination during use. Crucibles are integral to various scientific tasks, including melting, mixing, and analyzing samples under precise temperature and chemical control. With the diversity of materials available, such as Alumina, Zirconia, or Magnesium Oxide, it is critical to select the appropriate type of crucible for your specific application.

Types of Crucibles

What are crucibles made of? Crucibles comprise various materials, including metals, ceramics, and compounds, each suitable for different applications, often based on the crucible melting point. MSE Supplies offers many types of crucibles, including:

  • Alumina Crucibles: Widely used due to their high melting points and chemical resistance. Ideal for routine lab research.
  • Magnesium Oxide Crucibles: These can withstand ultra-high temperatures and are often preferable to lithium solid-state electrolyte synthesis.
  • Zirconia Crucibles: Known for their excellent wear resistance and are suitable crucibles for melting precious metals and super-alloys.
  • Boron Nitride Crucibles: Highlighted for their high thermal conductivity and excellent thermal shock resistance.
  • Graphite Crucibles: They are the best crucibles for melting metal and induction heating because of their high-temperature resistance.
  • Porcelain Crucibles: Economical choice for applications with temperatures below °C.
  • Quartz Crucibles: Excellent for material melting and chemical reactions in tube furnaces due to their thermal shock resistance and chemical inertness.

Order High-Quality Crucibles from MSE Supplies

When you choose MSE Supplies for all types of crucibles, you can count on the following:

  • Superior Quality: Our crucibles deliver reliable performance under extreme conditions, crafted from high-purity materials.
  • Broad Variety: We offer all types of crucibles in various materials like Alumina, Zirconia, and Magnesium Oxide for diverse applications.
  • Expert Assistance: Our experienced team provides insights into the best crucible for melting metal or your unique needs.

Order all types of crucibles from MSE Supplies today. We offer the best quality crucibles in the industry for the lowest prices. Our in-house materials scientists are committed to providing exceptional service and advice. Check out our special offers and programs, then order online or request a quote. 

If you have any questions, we’re here to help! Contact us online, or call at (520)789-.

What are the Factors for Selecting a Crucible?

There are several factors one needs to consider when selecting a crucible, this can seem a daunting task because there are several things to consider. These factors can range from needed volume, the shape, and the chemical reactions between the crucible and the chemicals you put in it no name just a couple. Here is a list of some of the most important factors to consider when selecting a crucible. 

  • What temperature will the crucible need to withstand?
  • What material crucible will be selected?
  • Is the material in the crucible going to react with the crucible?
  • Is the ramp rate being used going to thermally shock the crucible?
  • Is there a thermal gradient across the crucible, if so how will that affect the crucible?
  • What volume crucible will I need?
  • Will the geometry of the crucible be important?
  • Will the crucible fit in the furnace?
  • Is the crucible going to be used more than once?

This might seem a daunting list of questions to answer, but if you have ever chosen the wrong crucible for the job and ended up rebuilding your furnace you know the importance of answering these questions. If you need help choosing please continue reading this article. If you still need help our knowledgeable staff at MSE Supplies are here to help. Please feel free to us at to help you select a suitable crucible for your needs. 

What crucibles materials do MSE Supplies offer?

Alumina (Al2O3) Crucibles

Alumina crucibles (Al2O3) are widely used due to its versatility and its low cost. It is the most commonly used crucible for lab research use. The material has a high melting point is and relatively chemically inert. MSE Supplies offers a wide variety of shapes and sizes of Alumina crucibles.  If you need a size or shape not listed on our website, please us at . 

  • Melting point – 2,072 °C
  • Recommended Max working temperature – 1,600 °C
  • Max ramp rate - 5 °C/min < °C or 4 °C/min > °C
  • Max cooling rate - 2 °C/min
  • Avoid Thermal gradients
  • High Purity Alumina Rectangular Boat Crucibles at MSE Supplies
  • High Purity Alumina Cylindrical Crucibles at MSE Supplies
  • High Purity Alumina High Form Crucibles at MSE Supplies
  • High Purity Alumina Sample Pans to TGA and DCS at MSE Supplies

Magnesium Oxide (MgO) Crucibles

Magnesium Oxide (MgO) crucibles are good for ultra high temperatures and have a better chemical resistivity than that of alumina. MgO crucibles are usually inert to metals, slags, and superconducting compounds. When MgO crucibles are used in lithium solid state electrolyte synthesis or sintering, MgO has its own unique advantage of not reacting with lithium unlike Al2O3 crucibles, therefore it maintains the lithium vapor pressure better without causing access lithium loss in the solid state electrolyte. If you need a size or shape not listed on our website, please us at . 

  • Melting point – 2,852 °C
  • Recommended Max working temperature – 2,200 °C
  • Max ramp rate - 3 °C/min
  • Max cooling rate - 3 °C/min
  • Avoid thermal Gradients
  • 10 ml Magnesium Oxide Crucibles at MSE Supplies
  • 50 ml Magnesium Oxide Crucibles at MSE Supplies
  • 100 ml Magnesium Oxide Crucibles at MSE Supplies
  • Magnesium Oxide Rectangular Boat Crucibles at MSE Supplies

Zirconia (ZrO2) Crucibles

Zirconia (ZrO2) crucibles have excellent wear, chemical and temperature resistance. It can withstand high temperatures. It is ideal for applications which require temperatures higher than Alumina crucibles can withstand temperature (°C), such as melting of precious metals and super-alloys which have melting point higher than °C. If you need a size or shape not listed on our website, please us at .   

  • Melting point – 2,715 °C
  • Recommended Max working temperature – °C (air);  °C (N2 or Vacuum)
  • Max ramp rate - 5 °C/min
  • Max cooling rate - 5 °C/min
  • High Purity Zirconia High Form Crucibles at MSE Supplies

Boron Nitride (BN) Crucibles

Boron Nitride (BN) crucibles are a synthetic technical ceramic material. It has outstanding thermal characteristics: high thermal conductivity (751 W/mK) and excellent thermal shock resistance. The unique property of BN crucible is that it is non-wetting with molten metal. It is widely used for crystal growth, melting metals, rare earth materials, fluorides, glass, silicon, molten salt and luminescent materials. It is ideal for oxygen sensitive applications. If you need a size or shape not listed on our website, please us at . 

  • Melting point – 2,973 °C
  • Recommended Max working temperature – 900 °C (air),  °C (vacuum), °C (N2 or Ar)
  • Max ramp rate - 50 °C/min
  • Max cooling rate – can quench
  • High Purity Boron Nitride Cylindrical Crucibles at MSE Supplies

Graphite (C) Crucibles

Graphite (C) crucibles are made from high purity (>99.9%) graphite raw material. It has unique features such as high temperature resistance, excellent acid and alkali resistance, good thermal shock resistance, excellent thermal/electrical conductivity and high mechanical strength. It is widely used for induction heating and metal melting, such as Ag, Au, Cu and Al metals.  If you need a size or shape not listed on our website, please us at . 

  • Melting point – 3,600 °C (non-oxidizing environment)
  • Recommended Max working temperature – 400 °C (air), °C (non-oxidizing environment)
  • High Purity Cylindrical Graphite Crucibles at MSE Supplies

Porcelain Crucibles

Porcelain crucibles have good wear resistance, high temperature tolerance, excellent cold crushing and thermal shock resistance, and excellent chemical corrosion resistance. It is widely used for metallurgy, glass melting, gemstone purification, chemical industry and material science. It is the most economical crucible for applications with temperature lower than °C. If you need a size or shape not listed on our website, please us at . 

  • Recommended Max working temperature – °C
  • Max ramp rate - 3 °C/min
  • Max cooling rate – 3 °C/min
  • High Form Porcelain Crucibles at MSE Supplies

Quartz Crucibles

Quartz crucibles (>99.99%) have excellent thermal shock resistance and are chemically inert to most elements and compounds, including virtually all acids, regardless of concentration, except hydrofluoric acid. They are widely used for material melting and chemical reactions in tube furnaces. If you need a size or shape not listed on our website, please us at . 

  • Melting point – 1,670 °C (non-oxidizing environment)
  • Recommended Max working temperature – 1,200 °C
  • Max ramp rate - 3 °C/min
  • Max cooling rate – 3 °C/min
  • High Purity Quartz Boat Crucibles at MSE Supplies

MSE Supplies  (msesupplies.com/) is a major supplier of crucibles.  MSE Supplies offers a wide range of high purity lab crucibles, including Alumina (Al2O3)Zirconia (ZrO2), Quartz (SiO2), Magnesium Oxide (MgO), Boron Nitride (BN), Porcelain, Graphite (Carbon), Copper (Cu), Molybdenum (Mo), Nickel (Ni), Tantalum (Ta), Tungsten (W), Zirconium (Zr), PTFE and more.  Customized lab crucibles are available upon request.  Find popular high purity laboratory crucibles for sale at MSE Supplies. 

What Are The Key Properties Of A Crucible? Essential Features For ...

Tech Team · Kintek Solution

Updated 5 months ago

What are the key properties of a crucible? Essential Features for High-Temperature Applications

A crucible is a specialized container designed to withstand extremely high temperatures and harsh chemical environments, primarily used for melting metals or other substances. Its properties are critical for ensuring efficient, safe, and reliable operations in industrial, laboratory, and manufacturing settings. Key properties of a crucible include high-temperature resistance, thermal stability, chemical compatibility, durability, and thermal conductivity. These properties ensure that the crucible can handle the specific requirements of the materials being melted, prevent contamination, and maintain structural integrity under extreme conditions.

Key Points Explained:

  1. High-Temperature Resistance

    • Crucibles are designed to operate at temperatures far exceeding those of the materials they contain. This is achieved by using materials with exceptionally high melting points, such as graphite, silicon carbide, fused quartz, and boron nitride.
    • For example, graphite crucibles can withstand temperatures up to 3,000°C, making them suitable for melting metals like gold, silver, and aluminum.
    • High-temperature resistance ensures that the crucible does not degrade or fail during the melting process, which is critical for maintaining product quality and safety.
  2. Thermal Stability

    • Thermal stability refers to the ability of a crucible to maintain its structural integrity and performance under rapid temperature changes. This is particularly important in processes involving thermal cycling, such as repeated heating and cooling.
    • Materials like fused quartz and silicon carbide are known for their excellent thermal shock resistance, making them ideal for applications where temperature fluctuations are common.
    • Thermal stability minimizes the risk of cracking or warping, which could lead to leaks or contamination of the melt.
  3. Chemical Compatibility

    • Crucibles must be chemically inert to the materials they contain to prevent reactions that could lead to contamination or crucible deterioration.
    • For instance, graphite crucibles are resistant to acids and alkalis, making them suitable for melting a wide range of metals and alloys without reacting with them.
    • Chemical compatibility ensures the purity of the melt and extends the lifespan of the crucible by reducing wear and tear caused by chemical reactions.
  4. Durability and Impact Resistance

    • Crucibles are often subjected to mechanical stress during handling, pouring, and cleaning. Durability and impact resistance are essential to prevent cracking or breaking under such conditions.
    • Materials like silicon carbide and boron nitride are known for their high strength and toughness, even at elevated temperatures.
    • Durability ensures that the crucible can withstand repeated use without significant degradation, reducing the need for frequent replacements and lowering operational costs.
  5. Thermal Conductivity

    • Efficient heat transfer is crucial for reducing melting times and energy consumption. Crucibles with high thermal conductivity, such as those made from graphite, can distribute heat evenly and quickly.
    • This property is particularly beneficial in induction furnaces, where rapid and uniform heating is required.
    • High thermal conductivity improves process efficiency, reduces energy costs, and ensures consistent melting results.
  6. Shape and Design Variability

    With competitive price and timely delivery, Mingte sincerely hope to be your supplier and partner.

    • Crucibles come in a wide range of shapes and sizes, from small teacup-sized containers to large vessels capable of holding several tons of metal.
    • They may include features like pouring spouts for easy transfer of molten materials or be designed for specific furnace types, such as fuel-fired, electric resistance, or induction furnaces.
    • The design of a crucible is tailored to the specific application, ensuring optimal performance and ease of use.
  7. Material Composition and Structural Alignment

    • Modern crucibles are often composite materials, with graphite being a common base due to its excellent thermal and chemical properties. The performance of these crucibles depends on the precise control of the graphite’s structural alignment.
    • Advanced manufacturing techniques allow for the creation of highly heterogeneous materials that combine the benefits of multiple components, such as thermal conductivity, strength, and resistance to thermal shock.
    • This customization ensures that the crucible meets the exact requirements of the application, enhancing its performance and longevity.
  8. Applications and Versatility

    • Crucibles are used in a wide range of industries, including metallurgy, semiconductor production, jewelry making, and laboratory research.
    • Their versatility stems from their ability to handle different materials, temperatures, and processes, making them indispensable tools in high-temperature applications.
    • The choice of crucible material and design depends on the specific requirements of the application, such as the type of material being melted, the operating temperature, and the desired purity of the final product.

By understanding these properties, a purchaser can select the right crucible for their specific needs, ensuring efficient, reliable, and cost-effective operations.

Summary Table:

Property Description Example Materials High-Temperature Resistance Withstands extreme heat, crucial for melting metals like gold and aluminum. Graphite, silicon carbide Thermal Stability Maintains integrity under rapid temperature changes, preventing cracks. Fused quartz, silicon carbide Chemical Compatibility Resists reactions with molten materials, ensuring purity and longevity. Graphite, boron nitride Durability & Impact Resistance Withstands mechanical stress during handling and pouring. Silicon carbide, boron nitride Thermal Conductivity Ensures efficient heat transfer, reducing energy consumption. Graphite Shape & Design Variability Tailored shapes and sizes for specific applications and furnace types. Custom designs Material Composition Composite materials like graphite for enhanced performance and longevity. Graphite-based composites Applications & Versatility Used in metallurgy, semiconductor production, jewelry making, and labs. Multi-industry use

Find the perfect crucible for your high-temperature needs—contact our experts today!

Related Products

E Beam Crucibles Electron Gun Beam Crucible for Evaporation

In the context of electron gun beam evaporation, a crucible is a container or source holder used to contain and evaporate the material to be deposited onto a substrate.

Engineering Advanced Fine Alumina Al2O3 Ceramic Crucible for Laboratory Muffle Furnace

Alumina ceramic crucibles are used in some materials and metal melting tools, and flat-bottomed crucibles are suitable for melting and processing larger batches of materials with better stability and uniformity.

Engineering Advanced Fine Ceramics Alumina Al2O3 Crucible With Lid Cylindrical Laboratory Crucible

Cylindrical Crucibles Cylindrical crucibles are one of the most common crucible shapes, suitable for melting and processing a wide variety of materials, and are easy to handle and clean.

Engineering Advanced Fine Ceramics Alumina Crucibles (Al2O3) for Thermal Analysis TGA DTA

TGA/DTA thermal analysis vessels are made of aluminum oxide (corundum or aluminum oxide). It can withstand high temperature and is suitable for analyzing materials that require high temperature testing.

Evaporation Crucible for Organic Matter

An evaporation crucible for organic matter, referred to as an evaporation crucible, is a container for evaporating organic solvents in a laboratory environment.

High Purity Pure Graphite Crucible for Evaporation

Vessels for high temperature applications, where materials are kept at extremely high temperatures to evaporate, allowing thin films to be deposited on substrates.

Electron Beam Evaporation Coating Tungsten Crucible and Molybdenum Crucible for High Temperature Applications

Tungsten and molybdenum crucibles are commonly used in electron beam evaporation processes due to their excellent thermal and mechanical properties.

Electron Beam Evaporation Coating Gold Plating Tungsten Molybdenum Crucible for Evaporation

These crucibles act as containers for the gold material evaporated by the electron evaporation beam while precisely directing the electron beam for precise deposition.

Alumina Al2O3 Ceramic Crucible Semicircle Boat with Lid for Engineering Advanced Fine Ceramics

Crucibles are containers widely used for melting and processing various materials, and semicircular boat-shaped crucibles are suitable for special smelting and processing requirements. Their types and uses vary by material and shape.

High Temperature Alumina (Al2O3) Furnace Tube for Engineering Advanced Fine Ceramics

High temperature alumina furnace tube combines the advantages of high hardness of alumina, good chemical inertness and steel, and has excellent wear resistance, thermal shock resistance and mechanical shock resistance.

High Purity Pure Graphite Crucible for Electron Beam Evaporation

A technology mainly used in the field of power electronics. It is a graphite film made of carbon source material by material deposition using electron beam technology.

Custom-Made Alumina Zirconia Special-Shaped Ceramic Plates for Engineering Advanced Fine Ceramics Processing

Alumina ceramics have good electrical conductivity, mechanical strength and high temperature resistance, while zirconia ceramics are known for their high strength and high toughness and are widely used.

High Temperature Aluminum Oxide (Al2O3) Protective Tube for Engineering Advanced Fine Ceramics

Alumina oxide protective tube, also known as high temperature resistant corundum tube or thermocouple protection tube, is a ceramic tube mainly made of alumina (aluminum oxide).

High Temperature Wear-Resistant Alumina Al2O3 Plate for Engineering Advanced Fine Ceramics

High temperature wear-resistant insulating alumina plate has excellent insulation performance and high temperature resistance.